Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Intervalo de año de publicación
1.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-517465

RESUMEN

Alongside vaccines, antiviral drugs are becoming an integral part of our response to the SARS-CoV-2 pandemic. Nirmatrelvir - an orally available inhibitor of the 3-chymotrypsin-like cysteine protease - has been shown to reduce the risk of progression to severe COVID-19. However, the impact of nirmatrelvir treatment on the development of SARS-CoV-2-specific adaptive immune responses is unknown. Here, by using a mouse model of SARS-CoV-2 infection, we show that nirmatrelvir administration early after infection blunts the development of SARS-CoV-2-specific antibody and T cell responses. Accordingly, upon secondary challenge, nirmatrelvir-treated mice recruited significantly fewer memory T and B cells to the infected lungs and to mediastinal lymph nodes, respectively. Together, the data highlight a potential negative impact of nirmatrelvir treatment with important implications for clinical management and might help explain the virological and/or symptomatic relapse after treatment completion reported in some individuals.

2.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-422677

RESUMEN

Compound repurposing is an important strategy for the identification of effective treatment options against SARS-CoV-2 infection and COVID-19 disease. In this regard, SARS-CoV-2 main protease (3CL-Pro), also termed M-Pro, is an attractive drug target as it plays a central role in viral replication by processing the viral polyproteins pp1a and pp1ab at multiple distinct cleavage sites. We here report the results of a repurposing program involving 8.7 K compounds containing marketed drugs, clinical and preclinical candidates, and small molecules regarded as safe in humans. We confirmed previously reported inhibitors of 3CL-Pro, and have identified 62 additional compounds with IC50 values below 1 M and profiled their selectivity towards Chymotrypsin and 3CL-Pro from the MERS virus. A subset of 8 inhibitors showed anti-cytopathic effect in a Vero-E6 cell line and the compounds thioguanosine and MG-132 were analysed for their predicted binding characteristics to SARS-CoV-2 3CL-Pro. The X-ray crystal structure of the complex of myricetin and SARS-Cov-2 3CL-Pro was solved at a resolution of 1.77 [A], showing that myricetin is covalently bound to the catalytic Cys145 and therefore inhibiting its enzymatic activity. Graphical abstract O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=154 SRC="FIGDIR/small/422677v1_ufig1.gif" ALT="Figure 1"> View larger version (41K): org.highwire.dtl.DTLVardef@17ca2aeorg.highwire.dtl.DTLVardef@19c5159org.highwire.dtl.DTLVardef@1a0adf6org.highwire.dtl.DTLVardef@1fd05cd_HPS_FORMAT_FIGEXP M_FIG O_FLOATNOAbstract Figure.C_FLOATNO Workflow for identification and profiling of inhibitors of SARS-CoV-2 3CL-Pro using a large scale repurposing and bioactive compound collection (rhs). Primary assay principle based on quenched FRET peptide substrate of SARS-CoV-2 3CL-Pro (lhs). Inhibiting compounds reduce fluorescence signal relative to DMSO controls. Hit profiling using X-ray. C_FIG

3.
Med Chem ; 5(5): 398-410, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19534674

RESUMEN

The HIV-1 reverse transcriptase (RT) associated ribonuclease H (RNase H) activity hydrolyzes the RNA component of the viral heteroduplex RNA:DNA replication intermediate. Even though this function is essential for viral replication, until now only very few compounds have been reported to inhibit it. Anthraquinones are common secondary metabolites which have diverse biological activities. In particular, some of them have been reported to inhibit the HIV-1 RT polymerase and integrase activities in biochemical assays. Given the structural similarities between integrase and RNase H proteins, we synthesized a series of frangula-emodine derivatives and showed that the introduction of a bromine atom in position 7 of the anthraquinone structure leads to derivatives which are able to inhibit both HIV-1 polymerase and RNase H functions at micromolar concentrations. Mechanism of action studies performed on the 7-brom-6-capital O, Cyrillic-phenacyl-1,8-dihydroxy-3-methyl anthraquinone (K67) showed that this compound is a non-competitive inhibitor of the RNase H function and that it binds to a site which is not overlapping to the non-nucleoside RT inhibitors binding site. This study demonstrates that anthraquinone derivatives may be a scaffold to be further developed to obtain selective HIV-1 RNase H inhibitors and represent a new step toward the identification of new anti-RT agents.


Asunto(s)
Emodina/análogos & derivados , Emodina/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , VIH-1/enzimología , Ribonucleasa H/antagonistas & inhibidores , Secuencia de Bases , Sitios de Unión , ADN/genética , ADN/metabolismo , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Interacciones Farmacológicas , Emodina/química , Emodina/metabolismo , Inhibidores Enzimáticos/metabolismo , Transcriptasa Inversa del VIH/antagonistas & inhibidores , Transcriptasa Inversa del VIH/metabolismo , Cinética , Nevirapina/química , Inhibidores de la Transcriptasa Inversa/química , Ribonucleasa H/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...